Some Difference Equations for Srivastava’s λ-Generalized Hurwitz–Lerch Zeta Functions with Applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Family of the λ -Generalized Hurwitz-Lerch Zeta Functions with Applications

Abstract: Motivated largely by a number of recent investigations, we introduce and investigate the various properties of a certain new family of the λ -generalized Hurwitz-Lerch zeta functions. We derive many potentially useful results involving these λ -generalized Hurwitz-Lerch zeta functions including (for example) their partial differential equations, new series and Mellin-Barnes type conto...

متن کامل

Some Nesbitt Type Inequalities with Applications for the Zeta Functions

In this paper, we show some new generalizations of Nesbitt’s inequality. As applications of the generalizations, we obtain the minimum value related to the Riemann zeta function and the Hurwitz zeta function.

متن کامل

Functional equations for double zeta-functions

As the first step of research on functional equations for multiple zeta-functions, we present a candidate of the functional equation for a class of two variable double zeta-functions of the Hurwitz–Lerch type, which includes the classical Euler sum as a special case.

متن کامل

Autoconvolution equations and generalized Mittag-Leffler ‎functions

This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...

متن کامل

On Some Fractional Systems of Difference Equations

This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11030311